
1
9
9
1
A
J
.
.
.
.
1
0
2
.
1
5
1
0
H

THE ASTRONOMICAL JOURNAL VOLUME 102, NUMBER 4 OCTOBER 1991 

THE MOTION OF MARS' POLE.  I. RIGID BODY PRECESSION AND NUTATION 

JAMES L. HILTON 
U.S. Naval Observatory, 34th Street and Massachusetts Avenue NW, Washington, DC 20392 

Received 5 March 1991; revised 20 June 1991 

ABSTRACT 

The total precession in longitude for a solid-core, rigid Mars model is found to be 
A^ = — 7!'296 + 0".01\ yr~ \ This precession includes the motion resulting from the extremely long- 
period (> 10 000 yr) nutation components that result from changes in Mars' orbit with time. These 
same very long-period nutation components also contribute a "precession" in latitude of 
A£ = 0''4255 + 0!'0012 yr" ^ The nutation components in longitude with amplitudes larger than 0"001 
consist of eight solar nutation terms and one nutation each contributed by the motions of the nodes of 
Phobos and Deimos and a single nutation from the direct gravitational torque of Jupiter. The nutation 
components in obliquity consist of six solar terms and one nutation term each from the motion of the 
nodes of Phobos and Deimos. The amplitudes and periods of the solar nutation terms are in agreement 
with the nutation found by Reasenberg & King [J. Geophys. Res., 84, 6231 (1979) ]. The solar preces- 
sion rate also agrees with Reasenberg and King's value with the two small corrections resulting from 
the change in the orientation of Mars' orbit with time added to it. A single nutation in longitude driven 
by Jupiter is the only significant planetary contribution at the milliarcsecond level. 

L INTRODUCTION 

Differences between the observed forced nutation compo- 
nent amplitudes of the Earth and predicted nutation ampli- 
tudes for a rigid Earth are a result of differences between the 
theoretical rigid structure of the Earth used in older models 
and the actual elastic Earth with a liquid core. However, 
except for the period of the Chandler wobble, the observa- 
tions of the motion of the Earth's pole were not accurate 
enough to observe the effects of the elastic, liquid core Earth 
until the last 30 years. In more recent works, such as those by 
Wahr (1981a,b), the nutation resulting from an elastic, liq- 
uid core Earth are modeled as perturbations of the rigid 
Earth model nutation. This is the approach adopted for the 
1980 lAU Theory of Nutation to determine the amplitude of 
the various nutational elements (Kaplan 1981). These per- 
turbations result in modifications to the nutation amplitudes 
for the Earth from about 1% to 0.01% of the theoretical 
rigid nutation amplitudes or about 0''019 for the largest term 
in the series. Since the 1950s the improvement in the mea- 
surement of the motion of the Earth's pole have made its 
observation a powerful probe of the structure of the Earth. 
The recent increase in the quality of the data available for the 
precession and nutation for the Earth has started a reevalua- 
tion of nutation theory for both rigid and elastic Earth mod- 
els to improve their accuracies (e.g., Kinoshita & Souchay 
1990; Zhu et al. 1990). The most recent work, such as done 
with VLBI, has made the information on the Earth's interior 
obtained from observations of precession, nutation, and po- 
lar motion of the same quality as can be determined from 
seismometry (Melchior 1986). This method can be used as a 
probe of the structure of other planets in the solar system 
provided that it is possible to observe the planet's orientation 
in space with high enough accuracy. This requirement can 
definitely be fulfilled for only one other planet in the solar 
system. Mars. 

Mars, the fourth planet from the Sun, is the third in size of 
the terrestrial planets of the solar system. Its orbit brings 
Mars to within 0.53 AU of the Earth. Its surface is not cov- 
ered by clouds like Venus and the gaseous giant planets, and, 
unlike Mercury, it is observable away from the Sun's glare. 

These properties make Mars the easiest planet in the solar 
system, aside from the Earth, to observe. Despite its small 
size [equatorial radius 3393.4 km and mass 6.42X10^^ kg; 
Astronomical Almanac for the Year 1990 (1989)], Mars 
shows many Earthlike properties in its physical ephemeris. 
Mars has a sidereal day of 1.0260 Earth solar days, the inch- 
nation of its equator to the plane of its orbit of 25!20, and a 
geometric oblateness of 0.0052 in comparison to the Earth's 
geometric oblateness of 0.0034. 

It is, however, a mistake to assume that Mars has an inter- 
nal composition that is the same as the Earth. First, Mars has 
a mean density that is only 61.9% of the mean density of the 
other terrestrial planets. 

The inertia ratio is a measure of a planet's central conden- 
sation defined by 

q=C/J^R' (1) 

where C is the principal moment of inertia about the polar 
axis, ^ is the mass of the planet, and R is the equatorial 
radius of the planet. The estimates of ^ for Mars range from 
0.3654 (Reasenberg 1977) to 0.3452 (Bills 1989) in com- 
parison to 0.3335 for the Earth and 0.4 for a homogeneous 
sphere. The large value for the inertia ratio means that Mars 
is less centrally condensed than the Earth, but it is also small 
enough to show that Mars is not completely homogeneous. 
Mars may have a very small external magnetic field, the 
strength of which has not yet been accurately measured, but 
it has been established that Mars' magnetic field is much 
smaller than the Earth's. Other information on the interior 
structure of Mars is very sketchy. The only structural infor- 
mation that is certain is Mars' radius and its mean density. In 
addition the structure of the surface gravity field to twelfth 
degree and order has been published by Christensen & Bal- 
mino (1979), but the higher order structure of the field is 
only preliminary. 

The seismic experiments included in the Viking probes 
were designed only as a preliminary survey to determine 
what instruments would be necessary on future missions to 
Mars. Also, the seismic package functioned properly on only 
one of the two landers (Anderson et al. 1977). 
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The less extreme central condensation of Mars and its 
small magnetic field are the reasons that some of the existing 
models of Mars picture a planet with a solid core (Binder & 
Davis 1973) rather than a hquid core as the Earth has. Most 
models, however, do use liquid cores, but the composition of 
the core is very much in question. Johnston & Toksoz 
(1977) and Okal & Anderson (1978) discuss the merits of 
various possible liquid core configurations. The two main 
types of core used in the models are either small and formed 
from molten Fe or large and containing a molten iron com- 
pound such as FeS. If the core is composed of Fe, it needs to 
be, proportionately, much smaller than the Earth's core to 
be consistent with the smaller central condensation of Mars 
and to account for the small magnetic field. A core com- 
posed of FeS would be larger than a Fe core since FeS is less 
dense. Also, FeS is not as good an electrical conductor as Fe, 
so the small magnetic field is not a consideration. The range 
of models investigated by Okal & Anderson (1978) included 
cores with radii from 20% to 60% of Mars' radius and con- 
tained 7% to 31% of its total mass. The key to determining 
the core's composition is determining its mean radius which, 
along with the planetary inertia ratio, will determine its 
mean density. 

By using the Earth as an example for how the motion of 
the pole is affected by a planet's structure and keeping in 
mind the known and possible differences between Mars and 
the Earth, it is possible to use the motion of Mars' pole as a 
probe of its interior structure. The information needed to 
discriminate between the various models of the Martian inte- 
rior can be obtained from a few, highly accurate planetary 
orientation sensors as opposed to a large net of seismometers 
needed for a classic determination of the planetary interior. 

Mars has been the subject of most of the attempts to deter- 
mine the precession and nutation of other planets. One of the 
first attempts to calculate Mars' precession was by Struve 
(1898) who obtained a value of — 7''07 per terrestrial year. 
More recent attempts to determine the precession of Mars 
theoretically are those of de Vaucouleurs (1964) with a 
precession rate of — 7''07 per year and Reasenberg & King 
(1979)who determined a precession rate of — 7''575 per 
year along with nine nutation components in longitude and 
seven nutation components in obliquity. These nutation 
components are the result of the direct solar torque and long- 
period changes in Mars' orbit only. The nutation compo- 
nents range in amplitude from 1''097 to 0''0(X)4 with periods 
ranging from 114.5 days to 686.9 days. Reasenberg & King 
also made a first study of the effects of other gravitational 
sources on the above terms. However, some sources for mo- 
tion of the pole have not been taken into account, such as (1) 
tidal distortion, that is, planetary elasticity, (2) diurnal po- 
lar motion due to tidal distortion, (3) regional tectonocism 
which may be responsible for the buildup of the Tharsis re- 
gion of Mars (Reasenberg 1977) and the formation of the 
Valles Marineris (Blasius et al. 1977), and (4) the torques of 
the Martian satellites on the precession and nutation of 
Mars. Although both satellites are small and in nearly equa- 
torial orbits, they are close enough to Mars that preUminary 
calculations indicate that Phobos has the potential for pro- 
ducing a precession of at least a few tenths of an arcsecond 
per year. Ward (1974) and Borderies (1980) have done 
work on the long period nutation of Mars. 

A preliminary study of the motion of Mars' pole from 
Viking data has been carried out by Borderies etal, (1980). 
This paper uses the data from the Martian ranging and 

Doppler shift information from the first nine months of the 
Viking landers on Mars. The results from these preliminary 
measurements show (1) there are definite systematic residu- 
als left from their solution for the planetary motion and (2) 
the data do not provide a long enough baseline for a defini- 
tive measurement of the motion of Mars' pole. 

The object of this paper is to determine the theoretical 
basis for the rigid-body precession and nutation of Mars in- 
cluding the contributions of Phobos, Deimos, and the plan- 
ets. A future paper will take the rigid-body framework devel- 
oped here, and apply it to an elastic planet. Models of Mars 
using either solid or liquid core configurations will show 
how the radius of the core and the core's state affect the 
precession, nutation, and other elements of the motion of 
Mars' pole. This pair of papers will then provide a basis for 
the first-order determination of Mars' structure based on the 
change in its spatial orientation with time. 

2. THE EQUATION OF MOTION 

The gravitational potential of a test particle at r by an 
extended mass J^ is expressed by 

-G <D(r)=- 

+ 

■[M^^{p,{r^r')dr. 

lJp2(rT')fif^+ •••), (2) 

where r' is the position of an infinitesimal mass element d^n 
within the extended mass and P„(rT') are the Legendre 
polynomials of order n. The geometric algebra form of the 
Legendre polynomial uses the dot product of two vectors 
rather than the usual cosine of the angle between the vectors 
for the free parameter. 

From Appendix A the first-order equation for the torque 
of a point mass /?2 on a spheroidal planet is 

Fi~-3—^-J, (f: V 1 (r-e)e. (3) 

where ^n is the mass of the perturbing body, r is the distance 
from the center of mass of the planet to the perturbing body, 
r is the unit vector pointing toward the perturbing body from 
the center of mass of ^, e is the unit vector along the axis of 
the greatest principal moment of inertia, J2 is the dynamical 
form factor, and R is the equatorial radius of the planet. 

The equation for the forced motion of the pole of a spher- 
oidal body is found to be 

( -Asin6,-)^,0) 

3G/72    J' 
-(sin 8 cos 8 sin a,sin 8 cos 8 cos a,0),     (4) 

r^a    q 
where A is the time derivative of the motion in longitude with 
respect to a given inertial coordinate plane, (3 is time deriva- 
tive of the latitude, a is the longitude of the perturbing body 
with respect to the equator of the planet, and 8 is the latitude 
of the perturbing body with respect to the planet's equator. 

3. SOLAR PRECESSION 

For the solar precession and nutation two additional sim- 
plifications can be made. First, the inclination of the orbital 
plane of the Sun about Mars and the orbital plane of Mars 
about the Sun are identical, so 6 = 60. Second, the mean orbi- 
tal plane at the chosen epoch is identical to the reference 
plane, that is /& = 0, so cos )5 = 1 and sin P = 0. 
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3.1 Precession and Nutation for a Circular Orbit 

In Eq. (4) the angle € varies only a small amount over 
relatively short periods of time ('-'10'* yr). Ward (1974) 
and Borderies (1980) showed that the obliquity of Mars 
oscillates about 4° on a time scale of 1.2 X10^ yr and about T 
over 1.2 X10^ yr. These changes in inclination are mainly a 
result of changes in the orbital plane of Mars rather than 
changes in the orientation of the rotation axis. Thus, for the 
present purposes, € is considered constant. The effect of the 
change in the obliquity of Mars on its precession and nuta- 
tion will be covered in Sec. 3.3 and Appendix D. Therefore, 
for a circular orbit, the only quantity that changes with time 
on the right-hand side of Eq. (4) is the longitude X. The 
zeroth-order approximation for >l is a monotonically in- 
creasing function of time: 

A(0=«^ + /lo, (5) 

where AQ is the ecliptic longitude at some initial epoch t^. 
Using Eq. (5) in Eq. (4) gives 

/i sin 6: 

and 

 ^^sinecos6sin^(/2^ + >^o) (6) n      q r" 

P = ^ ^ sin(nt + /^o)sin e cos(nt + >^o) 
Q.   q r 

(7) 

These two equations for A and P are integrated to determine 
both the precession in longitude and the first nutation terms 
in longitude and latitude that arise from a circular orbit of 
Mars about the Sun. Equation (6) is divided by sin € and 
integrated over the orbital period. The change in longitude 
of the pole as a function of time is 

A = ^ —- COS e — t- 
a      q r' \2 4« 

sin2(«r + /lo) l + C. o)) 

(8) 

Integrating Eq. (27) gives 

P- — 3(j J2 ^^ 

il      q r^ An 
sine cos2(nt-\-Ao) +C'.       (9) 

Using the definition of the Euler angles Ae= — Afi and 
Atff= — AA. Thus, the negatives of Eqs. (8) and (9) give 
the precession in ip and the circular orbit nutation terms in 
both € and ^. 

For the solar precession and nutation of Mars, the values 
for the quantities needed to evaluate Eqs. (8) and (9) are 

(7= (6.672 + 0.001 )X 10-^^ m^kg-^-^ 

(Kaplan 1981), 

.^z = (1.9891 +0.0001 )X103'' j^g    (Kaplan 1981), 

r = (2.279 390 77X10*^ + 1500)m 

(Kaplan 1981; Bretagnon 1982), 

J2 = (1.959 0468 ± 0.000 138 70) X 10 "' 

(Christensen & WiUiams 1978), 

q = 0.3654 + 0.0010    (Reasenberg 1979), 

a = (7.088 2181X 10- ^ ± 1X10" ^2)s"' 

{Mayo etal. 1977), 

€ = (25°20 + 0?02)    (Sinclair, 1972). 

The exact value for the inertia ratio q is still unknown as 
pointed out by Bills (1989). The value of ^ is derived from 
models of Mars' gravity field. These gravity field models 
incorporate an assumed orientation for the nonhydrostatic 
component of Mars' mass distribution with respect to its 
equator. Reasenberg's (1977) value finds that the pole of the 
nonhydrostatic component of Mars' structure is oriented 
along the pole of Mars' greatest principal moment of inertia. 
Bills, however, argues based on statistics that the nonhy- 
drostatic component of Mars' mass distribution is more like- 
ly to have the pole of Mars' nonhydrostatic component in the 
midlatitude regions. For this orientation of the nonhydrosta- 
tic component the best value for Mars' inertia ratio is 
q = 0.345. However, the two largest visible nonyhydrostatic 
components of Mars, the Valles Marineris and the Tharsis 
uplift, are both centered near the equator, and Mars, unlike 
the Earth, has a definite correlation between its low-order 
gravitational field components and its terrain features (Lor- 
ell et al. 1972). Other arguments favoring Reasenberg's iner- 
tia ratio are presented by Kaula etal. (1989). Therefore the 
value for the inertia ratio used here is 0.3654 (Reasenberg 
1977). 

Using the above, constants for Mars, the precession of 
Mars, the first term in Eq. (28) is 

^= -(1.1504 + 0.0032)X 10-^2 s"^ 

= -(7:'488±0r021) yr-^ 

This value for the mean precession of Mars' pole compares 
very favorably with previously derived values for the polar 
precession. By far, the largest source of uncertainty (99.7%) 
in the precession rate is the uncertainty in the inertia ratio q. 

The amplitude of the two circular orbit nutation compo- 
nents driven by the torque of the Sun on Mars are deter- 
mined using the mean orbital motion of Mars taken from 
Bretagnon (1982) 

«= 1.058 589 015X10-'+ 1X10"^^ rads-^ 

Substituting this into Eq. (8) gives a nutation amplitude of 

_L^:^^ cos e= (5.434 +0.015) X 10-^ rad 
An Q. q r 

= i:'i2i + oroo3. 

Similarly, using the value for sin € the amplitude of the main 
nutation in obliquity determined from Eq. (9): 

^^ —^ —sine=(-2.557 + 0.007)XlO-^ rad 
An   a q r' 

- Or527 + 0:'002. 

Both of these nutation amplitudes are in good agreement 
with the primary nutation amplitudes determined by Rea- 
senberg & King (1979) of ir097 in longitude and 0^5157 in 
obliquity. 

Now only the initial phase AQ needs to be determined. The 
restoring force on Mars is at its greatest when Mars is at its 
solstices. Therefore, the greatest deviation from the mean 
will also occur at the solstices. Letting the mean longitude of 
Mars be represented by Jf and the angle between the perihe- 
lion of Mars and its vernal equinox be A, then 

nt^AQ=^^ -A. (10) 

The circular orbit precession and nutation terms for Mars 
are 
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^= -7:'488r+i:'121cos2(^ 

5£ = 0:'527sin2(^-A). 
■A), 

(11) 

3.2 Components from the Orbital Eccentricity 

The next level of complication to add to the determination 
of the amplitudes of Mars' nutation components is the 
change in the torque on the planet as a function of distance 
from the Sun. The nutation will be determined by using a 
series expansion in sine and cosine functions of angular vari- 
ables. The angular variables are chosen to be linear functions 
of time. 

For the Sun's torque on Mars, the angular variables used 
are <i^ and A. The result to expect from such an expansion is 
that the two circular orbit nutation terms in Eqs. (10) and 
(11) above will be split into two series of nutation compo- 
nents for the planet. From Appendix B the precession and 
nutation are 

A = -Q cos 
1 

n'^in^ 
[^„sin(«^) 

P = —^ sm 61 

B \ 
-C„cos(2AH-«J^)] +—r:-sin(2A + nJ^)j, 

(X -^cos(2A + «if) 
\n = o nJz 

+ -%sin(2A + n^)), 
nJL / 

(12) 

where AQ, A„,B„y and C„ are coefficients determined in Ap- 
pendix B. Inserting the appropriate values for the constants 
for Mars the coefficient for the precession becomes 

1/;= -7:'587 + 0:'021 yr-^ 

The coefficients for the nutation terms larger than 0''(X)1 
are given in Table 1. All of the nutation amplitudes fromC„ 
coefficients are smaller than 0''001 so there are no 
[cos (2A -f «^) ] terms in longitude or (sin 2A sin «J^) 
terms in obliquity in Table 1. As before, the largest source of 
uncertainty is the inertia ratio of Mars. 

3.2.1 Changes of eccentricity with time 

Mars is subject to planetary gravitational torques as well 
as the torque provided by the Sun. The planetary perturba- 
tions cause the shape and orientation of Mars' orbit to vary 
with time. The two changes in the orbit and orientation 
which are of concern are the eccentricity of Mars' orbit and 
the obliquity of Mars to its orbit. The change in the obliquity 
does cause small but significant changes in the nutation in 
obliquity and will be treated in the next section. In this sec- 
tion the effect of change in the eccentricity of the orbit will be 
explored. 

The treatment of the eccentricity uses the Bretagnon 
(1982) semianalytic theory for Mars and is divided into pe- 
riodic and secular terms. Appendix C shows that all of the 
periodic components caused by the change in eccentricity 
are insignificant. Substituting the nonperiodic, zeroth-order 
corrections into Appendix C the total precession becomes 

tP= -7:'588±Or021 yr-^ 

The change of 0''001 yr ~ ^ is smaller than the uncertainty in 
the precession. 

Including the secular zeroth-order part for eccentricity 

TABLE 1. Amplitudes for the rigid body solar nutation components of 
Mars. 

Nutation Components in Longitude 

Term Amplitude 
(") 

Error 
(") 

Period 
(day) 

sin L 
sinlL 
sin 3L 
sin (2A + L) 
sin (2A + 2L) 
sin (2A + 3L) 
sin (2A + 4L) 
sin (2A + 5L) 
sin (2A + 6L) 

-0.6343 
-0.0443 
-0.00405 
-0.1046 
1.0963 
0.2396 
0.0407 
0.00630 
0.000926 

0.0018 
0.0001 
0.00001 
0.0003 
0.0031 
0.0007 
0.0001 
0.00002 
0.000003 

686.93 
343.46 
228.98 
686.72 
343.41 
228.96 
171.72 

137.38 
114.48 

Term 

Nutation Components in Latitude 

Amplitude                          Error 
(")                                  (") 

Period 
(day) 

cos (2A + L) 
cos (2A + 2L) 
cos (2A + 3L) 
cos (2A + AL) 
cos (2A + 5L) 

-0.0492 
0.5159 
0.1127 
0.01917 
0.002963 

0.0001 
0.0014 
0.0003 
0.00005 
0.000008 

686.72 
343.41 
228.96 
171.72 
137.38 

L = Mars' mean longitude 
A = angle between the perihelion and the vernal equinox of Mars 

from Bretagnon's theory does cause a change that is larger 
than the uncertainty of the individual terms for most of the 
nutation terms (Table 2). For most of the components, how- 
ever, the change in amplitude is too small to avoid being lost 
in the uncertainty of the larger nutation components. The 
effect of the change of eccentricity with time is seen as a small 
change in the amplitudes of the nutation components. 

/ 
33 Changes in Orbital Inclination and the Ascending Node 

A final source for solar nutation components is long term 
change in the obHquity of Mars* equator to its orbit. The 
source of the changes in obliquity is not the nutation in obliq- 
uity, terms which have periods of a Martian sidereal year 
(686.9297 days) or less. The change in obliquity is the result 
of changes in the orientation of Mars* orbital plane with time 
in response to the perturbations of the other planets in the 
solar system. Ward (1974) and Borderies (1980) show that 
the variation in the obliquity of Mars resulting from changes 
in the orbital plane can be represented by a pair of approxi- 
mately equal amplitude oscillations; the first oscillation has 
a period of 1.14x 10^ yr, the second oscillation has a period 
of 1.26 X10^ yr, and the combined amplitude is about 10! 3. 

The equations of motion for Mars developed by Ward 
(1974) are 

de ,  .   .dO,   ,   .    , di 
— = — cos w sm / \- smw — 
dt dt dt 

(13) 

and 

dip      / •   • •    /    ^              .. dO. —^ = (sm I sin w cot e — cos /)  
dt dt 

a cos £ + cos tp cot € 
dl 
dt 

(14) 

This is a pair of coupled first-order equations for e and tp as 
a function of time. These equations are solved by making 
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TABLE 2. Amplitudes for the rigid body solar nutation components of 
Mars including the change in eccentricity with time. 

Nutation Components in Longitude 

Tenn Amplitude 
(") 

Error Period 
(day) 

sin L -0.6357 
%\xvlL -0.0445 
sinSX -0.00408 
sin (2A + L) -0.1047 
sin (2A + IL) 1.0962 
sin (2A + 3Z,; 0.2401 
sin (2A + AL) 0.0409 
sin (2A + fiL) 0.00634 
sin (2A + ^L) 0.000934 

0.0018 
0.0001 
0.00001 
0.0003 
0.0031 
0.0007 
0.0001 
0.00002 
0.000003 

686.93 
343.46 
228.98 
686.72 
343.41 
228.96 
171.72 
137.38 
114.48 

Nutation Components in Latitude 

Temi Amplitude 
(") 

Error 
(") 

Period 
(day) 

cos (2A + L) -0.0493 0.0001 686.72 
cos (2A + IL) 0.5158 0.0014 343.41 
cos (2A + 31,; 0.1130 0.0003 228.96 
cos (2A + AL) 0.01925 0.00005 171.72 
cos (2A + 51,; 0.002982 0.000008 137.38 

L = Mars' mean longitude 

A = angle between the perihelion and the vemal equinox of Mars 

repeated approximations of their actual values. The first- 
order solutions to the equations are a very good approxima- 
tion to the motion. Ward (1974) solved the first-order equa- 
tion for € and gives a first-order estimate to the first-order 
solution for the motion in longitude ^. The first-order solu- 
tion to the equation of motion in latitude and the third-order 
estimate to the first-order solution to the equation of motion 
in longitude are developed in Appendix D. 

Over short periods of time near the present era, + 10 000 
yr (Fig. 1), the motion in obHquity of the Martian pole as a 
result of the change in orientation of Mars' orbit can be rep- 
resented by the linear function 

6= (25°2±0°01) +0:'4255r, (15) 

where t is the time, in years, from J2000.0. Also, the zeroth- 
and first-order parts of the first-order solution for precession 
and nutation in longitude appear as a contribution to the 
precession of 

V^'ii = 0:'2127 + Or0006 yr-^ 

shown in Fig. 2. 
The secular portion of the second-order part to the first- 

order solution gives an additional correction in precession of 

5^12 = 0:'0797 + 0r0002 yr - ^ 

Overall, the change of Mars' orbit with time causes two 
measurable effects in longitude. (1) A set of very long-term 
nutation components from the first-order term. These nuta- 
tion components are seen over short periods of time as a 
"precession" of 0''2137 yr " ^ (2) There is an addition to the 
precession from the second-order term of 0''0797 yr ~ ^ 
Adding these terms to the solar precession the total preces- 
sion in longitude of Mars is 

^=: - 7:'296 + 0:'021 yr-^ 

In addition, there is a "precession" in latitude of 0!'4255 
yr-^ 

I 

27.00 

26.00 

25.00 

24.00 

-10000.00 0.00 

Years from present 

10000.00 

FIG. 1. Very long-period nutation in obliquity over historical periods 
of time. Over short time spans ± 10 000 yr the change in the inclina- 
tion of Mars' pole is nearly linear with time. 

4. PRECESSION AND NUTATION FROM NATURAL SATELLITES 

Mars has two satellites, Phobos and Deimos, to contribute 
to Mars' precession and nutation, just as the Moon contrib- 
utes to the Earth's precession and nutation. Although both 
of these satellites are small, their contributions to Mars' nu- 
tation may be fairly large because their mean distances from 
Mars are very small and forced nutation is a 1/r^ effect. The 
orbital elements of the satelHtes taken from Sinclair (1972) 
and the masses taken from Morley (1990) are 

Phobos: 

m = (1.05 +0.1) X 10'^ kg, 

/•= (9.378 +0.001 )X 10^ m, 

/=roi + ow, 
« = 7196.1730+ 0.0064 rad/yr, 

Ao = 2.817+ 0.003 rad, 

N= -2.776 + 0.003 rad/yr, 

iV= 2.65+ 0.07 rad, 

where / is the inclination of Phobos' orbit to the equator of 
Mars, n is the mean motion of Phobos, X^ is the longitude of 
Phobos at J2000.0, A^ is the motion of the node of Phobos' 
orbit, and jYis the position of the node of Phobos at J2000.0. 
These values for the physical quantities for Phobos give a 
precession constant of 

^ 0.40-q- 

f 0.20 

% 0.00 

I -0.20 
S -0.40-^ 

1 -0.60 

^ -0.80 

-10000.00 0.00 10000.00 

Years from present 

FIG. 2. Very long-period nutation in longitude over historical periods 
of time. Over short time spans ±10 000 yr the change in the longittide 
of Mars' pole is nearly quadratic with time. The coefficient for the 
quadratic term is only 0!'0001 yr ~ ^. 
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Q = }^h= (1.95 + 0.15) X10-*^ rad/s 
ftr    q 

= i:'26 + ono yr-^ 
Deimos: 
m = (1.8±0.15)XlO*' kg, 
r = (2.3459 + 0.0001) X 10^ m, 
/ = 2!695 ± 0^030, 
n = 1817.8545 ± 0.0003 rad/yr, 
^ = 3.768 ± 0.001 rad, 
^f= -0.1156 + 0.0001 rad/yr, 
7V= 0.16+ 0.01 rad. 

These values give the precession constant due to Deimos of 

Q = 
3Gy^z   J- 2^ (2.1 + 0.2) X10-^' rad/s 
0>P    q 

= o:'oi4 + o:'ooi yr-^ 
Thus, both of the satellites of Mars have the potential of 
contributing significantly to the precession and nutation of 
Mars. 

Since both of the satellites orbit Mars in planes near that of 
the planet's equator, the easiest method to deal with them is 
to return to the equations of motion (4) and rewrite them 

— B= QsinS cos 8 cos a = — sin 18 cos a, 
2 

— A sin 6 = 2 sin (5 cos 5 sin a = ~ sin 18 sin a,     (16) 

where Q= i3G^J2)/(r^0.q). Since the orbital planes of 
Mars' moons are nearly the same as the equatorial plane of 
Mars, the values for a and 8 as functions of time are 

8(t)^ism(nt + Ao-Nt-N), (17) 
where / is the inclination of the satellite's orbit to Mars' 
equator. Substituting these relations for a and <5 into the first 
of Eqs. (16) and assuming / is small gives to first order: 

-)^ - -^sin l[isinint + Ao-Nt- N)]cos{nt + AQ) 

= ^ [sinilnt + lAo -Nt-N)+ cos(Nt-\-N)], 

(18) 

Integrating Eq. (18) gives the nutation in latitude as a func- 
tion of time as 

1\N 

1 T-cos(2«r+2/l, ̂ ^m~N)) + c. (19) 
In-N 

Performing the same set of operations on the second of 
Eqs. (16) and using ip= —A gives the nutation in longitude 
as a function of time as 

2 sm6 

1 

\ln-N 
sinilnt + lAo-Nt-N) 

^sin(M + iV)] + C. (20) 

There is no precession term contributed by the Martian 
satellites in Eq. (20) because the invariable planes of the 
satellites' orbits are both essentially the plane of Mars' equa- 
tor. The similarity of the two planes is implicitly included in 
Eq. (\7) for 8(t). Thus, the precession contributions of the 
satellites are cancelled out by the motions of the nodes of the 
orbits. 

Evaluating Eqs. (19) and (20) and setting the constants 
of integration to ^(0) = 0 and 6(0) = €Q, using the orbital 
parameters for Phobos and Deimos gives 

Phobos: 

€ = (0r0040 + Or0003)sin[( - 2!776 + 0°003)r 

+ (2^65 + 0?07) ] + (7:'7 + 0:'7X 10"^) 

Xcos[(14 395!12 + 0.01)?+(2!98 + 0.07)] + fo, 
^ = (4"A + 0:'2) X10-' sin[ (14 395!12 + 0!01 )r 

+ (2?98 + o:'07)] + (o:'23 + oroi) 

Xcos[(-2^776 +0.003)r+ (2°65 + 0.07)]. 
Deimos: 

6= (0:'0028 + 0:'0002)sin[( - 0!1156 + 0?0001)^ 

+ (o°i6 + o°oi)] - (9:'o + or7xio-') 

Xcos[(3635°8264 +0.0004) r 

+ (7^38 + 0.01)]+6o, 
rp = (i:'9 + 0:'2X 10-^)sin[ (3635!8264 + 0.0004)r 

+ (7^38 + 0.01)] 

+ (0:'060 + 0.004)cos[( - Oni56 + 0.0001)? 

+ (0n6 + 0.01)], 

where the time t is in years. Only one term in each of these 
expressions for the nutation of Mars is large enough to be 
significant. The nutation in longitude from the torque of the 
Martian moons is deceptively large. The reason for the large 
nutation in longitude is because it is proportional to 
(sin 6) " ^ That is, the motion of the pole in longitude moves 
a large distance, but along a very small circle on the sky. The 
main source of uncertainty for the nutation from the satel- 
lites is the inclination of Phobos' orbital plane and mass for 
the nutation driven by Phobos and Deimos' mass for the 
nutation driven by Deimos. Deimos, despite its small mass 
and greater distance from Mars than Phobos, contributes to 
the nutation because of the slow motion of its node. 

The third-order term for the expansion of 
sm[lism(nt-j-Ao-Nt-N)] in Eqs. (17) is at least 3.7 
orders of magnitude smaller than the first-order term for an 
inclination of >T. Thus, the higher-order terms in the ex- 
pansion are insignificant. 

The nutation that arises from the eccentricity of the satel- 
lites' orbits is all insignificant because the periods for the 
largest nutation components are on the order of l/«, where n 
is the mean orbital motion. Since the amplitude of a nutation 
is inversely proportional to its period, a long-period nutation 
has a larger amplitude than a short-period one. The nutation 
components arising from the motion of the nodes are signifi- 
cant because the periods are long (828 days for Phobos and 
19 850 days for Deimos). The main nutation components 
arising from the eccentricity of the orbits will have periods of 
0.319 days for Phobos and 1.26 days for Deimos. Hence 
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these nutation components will be about the same size as the 
two small nutation components that were found in the first 
order expansion in Eqs. (19) and (20), and, therefore, 
insignificant. 

5. PRECESSION CONTRIBUTIONS FROM THE PLANETS 

Appendix D shows that the perturbations of the planets 
on Mars' orbit cause change in the orbit and hence a change 
in the precession rate and nutation component amplitudes 
from the change in the gravitational pull of the Sun. In this 
section the direct effect of the gravitational torques of the 
planets on Mars will be assessed. 

Again returning to Eq. (4) and rewriting its first two 
terms gives the equation of motion as 

— 0= ---smo cos 0 cos a 
[I   q r 

= Q^(2 sin 2)&cos e -h sin 2A sin € 
4r 

+ sin 2/1 cos 2/1 .cos e) (21) 

and 

— /I sm £• = ^ -— sm 5 cos o sm a 
a   q r' 

= Q -^ (3 cos 2/3 sin 2€ — sin 2€ 
Sr 

— cos 2/1 sin 2e — cos 2/3 cos 2A sin 2e 

+ 4 sin 2^ sin /L cos 2£), (22) 

where /^ is the mass of the perturbing planet and r is the 
distance between the planet and Mars. Because both Mars 
and the perturbing planet are circling the Sun the distance 
between the planet and Mars varies greatly as a function of 
time. Thus, the distance as a function of time will be estimat- 
ed using a series approximation in Appendix B. 

All of the functions on the right-hand side of Eq. (96) in 
Appendix E have the common factor 

2ra^ sin € 
Substituting in the appropriate values for the effect of the 
Earth on Mars gives 

Ci^ - OrOOO 1044 
Ea l.OOOEa       sin 50^40 

AU^ yr 2(1.524 AU)^ sin 25^20 

= 0:'000 026 69 yT~\ 

where Ea is the mass in Earth masses. Substituting in the 
appropriate constant values for Jupiter gives 

eiy=0:'000 2132 yr-^ 

The precession in longitude is determined from the first 
full term on the right-hand side of Eq. (96): 

^=e,4-^r(i+«')^. (24) 

Substituting in the values gi^, a, and ^o^^ for the torque of 
the Earth on Mars gives 

^^ = (0^000 026 69 yr-')(38.006) 

r       /1.000 AUVIQ.^^ 3^3        ,^ 
l       V 1.524 AUy J 

This precession is almost three orders of magnitude smaller 
than the uncertainty in the solar precession alone and, hence, 
insignificant. Substituting in the similar set of constants for 
Jupiter gives a precession of 

4^^ = 0:'000 198 yr-V; 

Again the precession contributed by Jupiter is insignificant. 
Summing the contributions from all of the planets in the 
solar system, the total precession contributed by the planets 
is calculated to be 

^^ = 0:'000 624 yr-'r. 

Thus, the Earth and Jupiter contribute 89.9% of the total 
planet driven component of Mars' precession. 

Similarly, the nutation in longitude components all have 
the general form of 

Q, 
1 

B^- 
af (25) 

An sin nt 
wherey = 0,1, or 2, and n is the sum of the mean motion for 
each of the perturbing planets and Mars times some integer 
coefficient. Therefore, based on the size of the coefficient 
Q^E the amplitude of a nutation term contributed by the 
Earth will be significant only if 

n 

With the correspondingly larger coefficient Q^j, the ampli- 
tude of a nutation term contributed by Jupiter will be signifi- 
cant only if 

n 

The Laplace coefficients for both planets steadily decrease 
with increasing k. The largest coefficient value for the Earth 
is B 0^^ = 38.006 and the largest Laplace coefficient value for 
Jupiter is -ffo^^ = 3.418. The value of a" will always be less 
than or equal to 1. Therefore, if a nutation term contributed 
by the Earth is large enough to be significant it must have a 
mean angular motion of 

n < 38.006/149.9 = 0.2535 rad/yr. 

And a significant nutation term for Jupiter must have 

n< 0.1822 rad/yr. 

For the Earth, the smallest n for k<9 is for w^ — 3«^ 
= 1.7511 rad/yr. Therefore, a significant nutation where 

the Earth as the driving body does not exist. However, for 
Jupiter, the smallest possible n for k<9 is 
Titij — n^ = 0.1107. Picking out the related terms for this 
value of n gives the term 

VP^=-%^HL2£± [(1+^2)^5/2^^^5/2-. 
2r   sin 6  4 

X- 
3«, 

■sin(3«y — n^)t. (26) 

Evaluating this equation gives a nutation term of 

4^^ = (0:'000 714 + 0:'000 002)sin(6?342r + 315!111), 

where t is in years. This is the largest nutation in longitude 
term for Mars being driven by Jupiter. Although it is a factor 
of 3.2 larger than any planetary nutation component of on 
the Earth (Vondrak 1982), it is just barely significant. 

Like Eq. (96), Eq. (98) in Appendix E has a very simple 
general form that makes the search for nutation in latitude 
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components that are worth evaluating simple. The general 
form of the motion in latitude terms contains 

0.50 

Q2B'o 
5/2 or 

n 
cos nty (27) 

where Q2 = Q/n/2fj^ sin e. Comparing Q2 with Q^ for the 
nutation in longitude equation gives 

gj/e^ = sin 2e/sin^ e. (28) 
Substituting in the present obHquity of Mars to its orbit gives 

e/a = 0.2658. 
Thus, a given nutation in obhquity term is only about 27% 
the size of the equivalent nutation in longitude term. There- 
fore, the one nutation in obliquity term that corresponds to 
3«y — n^ is insignificant. Its amplitude is 

8e= (0:'000 1897±a'000 0005)cos(^342t + 315!lll). 

The direct gravitational attraction of the planets on Mars 
does not contribute significantly to the precession and nuta- 
tion of Mars. However, as shown in Sec. i.i, the change in 
the orbit of Mars arising from perturbations by the planets 
does cause significant changes in the solar precession and 
nutation of Mars over very long periods of time. 

6. CONCLUSIONS 

The total precession in longitude for Mars is 

A^= - 7:'296 ± 0:'021 yr-^ 
This precession includes two components resulting from ex- 
tremely long-period (> 210 000 yr) nutation components 
from long period changes in Mars' orbit. Aside from the two 
contributions from the change in Mars' orbital plane with 
time, the precession is in excellent agreement with the 
precession found by Reasenberg & King (1979). These same 
very long-period nutation components also contribute a 
"precession" in latitude of 

Ae = 0:'4255 + 0r0012 yr-^ 
The nutation components in longitude with amplitudes 

larger than 0!'001 consist of eight solar terms in Table 2 and 
one nutation each contributed by the motions of the nodes of 
Phobos and Deimos. The nutation components in obliquity 
consist of the six solar terms in Table 2 and one nutation 
term each from the motions of the nodes of Phobos and Dei- 
mos. Again, the solar nutation in both longitude and latitude 
are in excellent agreement with those found by Reasenberg 
& King (1979). 

Although the torques of the Earth and Jupiter on Mars are 
several times larger than the torques of the planets in the 
solar system on the Earth, only a single nutation in longitude 
driven by Jupiter is significant at the milliarcsecond level. 

Looking at the nutation as a whole. Fig. 3 shows the nuta- 
tion of the Martian pole with respect to the mean pole over a 
period of 686.9 days (1 Martian sidereal year). This figure is 
very different from the same one for the Earth (Fig. 4). The 
difference between the two figures is the result of the differ- 
ence in the main driving mechanisms for the dominant terms 
in the nutation series for the two planets. For the Earth, each 
of the dominant terms is a factor of a few smaller than the 
next larger term and the periods are different by a factor of 
several. The periods and amplitudes are the result of the 
Earth having two major bodies, the Sun and the Moon, driv- 
ing its significant nutation components. For example, the 
three largest nutation components in longitude for the Earth 

I 
2 

I 
0.00 

-0.50 

0.00 0.30 

Nutation in Longitude (") 

0.60 

FIG. 3. Path of Mars' true celestial pole with respect to its mean celes- 
tial pole. The path of Mars' true celestial pole on the sky over the 
period of 1 Martian sidereal year (686.93 days). The mean pole moves 
at a rate of — 7''3 along the small circle of precession. The motion of 
the mean pole on the sky is about 3.1 arcsec per year. The "boomer- 
ang" motion of the true pole about the mean pole is the nutation. 

have amplitudes of - 17:'20, - 1'.'32, and - 0:'23 with per- 
iods of 6798, 183, and 14 days, respectively. The irrational 
ratios of the periods and amplitudes give rise to the ellipse on 
ellipse structure for the Earth's nutation in Fig. 4. For Mars, 
however, the three largest nutation components in longitude 
have amplitudes of 1''10, — 0!'64, and — 0''24 with periods 
of 344, 687, and 229 days, respectively. The ratio of the per- 
iods is nearly 2:1:3. The ratios of the periods are nearly in 
resonance because the only motions involved in driving the 
nutation are Mars' orbital motion and the motion of the peri- 
helion with respect to the ascending node of the equator of 
Mars. The motion of the perihelion with respect to the 

20.00 

^      10.00 

0.00 

5 
3 z 

-10.00 

-20.00 

-20.00 

Nutation in Longitude (") 

FIG. 4. Path of the Earth's true celestial pole with respect to its mean 
celestial pole. The path of the Earth's true celestial pole in the sky, over 
an 18 yr period beginning at J2000.0, with respect to the mean pole. 
The mean pole moves along a smooth arc at a rate of about 50" per 
year along the small circle described by precession. The motion along 
the small circle is seen as a motion of 20 arcsec per year on the sky. The 
complex epicyclic motion of the true pole is nutation. 
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TABLE 3. The apparent amplitude of the combined mean motion and 
perihelion terms for the three largest nutation components in longitude. 

Period 

(day) 

Amplitude 

 Q  

Phase 
(at J2000.0) 

n 
686.82 -0.5577 263.27 

343.44 1.131 127.20 

228.97 0.2433 110.19 

equinox, 0°03 yr ~ \ is very slow in comparison to the orbital 
motion, 19r417 yr"^ (Bretagnon 1982). The very slow 
motion of the perihelion causes the periods of the dominant 
nutation components in longitude and latitude to have per- 
iods that are nearly simple ratios. This simple structure is 
seen on the sky as Fig. 3. 

The slow motion of the perihelion also causes the nutation 
components in longitude with the forms of sin i2A-\- nJf) 
to appear over short periods of time (decades) as a single 
nutation with periods of «=i^ and amphtudes and phases of 

A sin (2A-\-nJf) +Bsin n^ 

: VZ^T^^T^35^in2A cos 

/   c^ , ^    _ 1 ^ cos 2A + 5 Xl«»r +tan 
B )■ 

(29) 

At J2000.0 

A = 250^70. 

Table 3 gives the apparent amplitudes and phases for the 
three largest nutation components in longitude. 

APPENDIX A: THE EQUATION OF MOTION 

The first four Legendre polynomials used in the equation 
of motion (2) in geometric algebra form are 

Po(r'T') = 1, (30) 

Pi(r.r')=r.r', (31) 

P2(rT')=^[3(r.r')2-/^r'^], (32) 

/>3(r.r') =i[5(rT')^-3r2/-'2(rV)]. (33) 

Integrating Eq. (2) for the potential, the Pi(rT') term 
disappears. The gravitational potential for a planet is then 

•)• 
(34) 

r    \ 1        r 
where 

5(r)=^Tr(/)-3r-/(r), (35) 

where / is the inertia tensor and Tr(/) is the trace of the 
inertia tensor. 

The gravitational field of an extended body is found by 
taking the gradient of Eq. (34) 

g(r)= -V<l>(r) 

(36) 

Substituting for ^(r) the gravitational field becomes 

g(r) 
GJ( r-3J, 

2[r-e]e} + 

a<' 5(f-e)2-l]r 

(37) 

where R is the equatorial radius for the body, e is the vector 
for the axis of the principal moment of inertia about the pole 
of the assumed hydrostatic spheroid for the planet, r is the 
unit vector from the planet to the torquing body, and J2 is the 
dynamical form factor defined by 

J^ = (38) 

where I^ is the principal moment of inertia about the axis of 
figure and /is the equatorial principal moment of inertia for 
a spheroidal planet. 

Thus, the force of a point mass ^n on an extended mass ^ 

F = /^zg(r)=- G^ /-. 
^ -K7)"" 5(r.e)2-l]f 

-2[f.e]e} + (39) 

The torque oS./7z on Jt is perpendicular to the vector from 
J^ Xom, that is r = r X F, so all of the terms in the direction 
of f can be ignored. The first-order perpendicular compo- 
nent of F is simply 

F,;^-3 G^x 
^ m (r«e)e. (40) 

The vector for the torque per unit moment of inertia H is 

(41) H = —-;^ - 3 -——^ (f e)e. 
/ r    q 

The steady precession for a torquing body whose position 
is fixed with respect to the planet is 

-H ft, = 
ft e 

(42) 

Substituting in Eq. (41) for the torque per unit moment of 
inertia gives 

fti ;=:;—- ^ e. (43) 
\ir    q    r 

This motion is the mean precession of Mars assuming that 
the position of the body providing the torque is fixed with 
respect to the planet. Mars, however, is moving with respect 
to the other masses in the solar system, so the time averaged 
value of (r-e)//* is needed. The vector r is a function of time 
so it is now convenient to introduce coordinates that will 
represent r(^) and can be used to produce measurable quan- 
tities for the precession and nutation of Mars. The coordi- 
nate system most useful for determining [r(^)-e] and the 
coordinate system most suited for measuring precession and 
nutation are rotated with respect to one another. First, the 
celestial coordinate system for the position of a perturbing 
body with respect to Mars is the equatorial coordinate sys- 
tem, the Martian Right Ascension a, and Martian declina- 
tion b of the perturbing body. These coordinates are defined 
to be exactly analogous to the Earth's equatorial celestial 
coordinate system. The epoch used for the coordinate sys- 
tem is J2000.0. In this system of coordinates the dot product 
(r-e)/r is simply 
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r(tH/r = sin S{t). (44) 

The direction vector e becomes 

e = cos S(t)ay (45) 

where a is the direction vector in curvilinear coordinates of 
increasing a. Finally, since the torque is the cross product of 
F and r, the motion is in the a direction. Substituting these 
values for (r'e)/r and e into Eq. (43) gives 

H =  —-^ sin 8{t) cos S(t)a. (46) 

The second coordinate system used is for the measure- 
ment of precession and nutation. Precession and nutation 
involve a change in the orientation of the rotation axis with 
time, so it is preferable to describe their components in a 
coordinate system that is independent of the position of the 

 I 

i = /3ft{[ — y^sin)^cos/^ — A cosPsinA], 

planetary pole. The coordinate system usually used is the 
Euler angles, tp, (f>, and e. The angle tp is the angle from the 
equinox of a chosen epoch to the intersection of the ascend- 
ing node of Mars* equator of date along the plane of the orbit. 
The angle (f> is the rotation of a point on the surface of Mars 
about the axis of rotation. The angle e is the inclination of the 
equator of Mars to the plane of its orbit about the Sun. 

Using the Euler angles and the ecliptic coordinates the 
angular momentum vector of the planet is 

1 = /3ft[ (cos P cos A), (cos P sin /I cos e — sin P sin 6), 

(cos )^ sin A sin 6 +sin ^ cos e)], (47) 

where A is the ecUptic longitude of the pole of rotation and P 
is the ecliptic latitude of the pole. Thus, the time derivative of 
the angular momentum in the ecliptic coordinate system is 

[)^(sin P sin A cos 6 + cos ^^ sin e) -\- A(cos p cos A cos €) — 6(cosp sin A sin e + sin P cos e) ], 

[^(cos Pcose — sin P sin A sin e) -{-AicosP cos A sin e) + 6(cos P sin A cose — sin ;^ sin 6) ]} . (48) 

If the epoch of the ecliptic coordinate system is chosen to be 
near the time of observation, then the angular momentum 
vector will point near A = 90°, p=90° — e, and the obliqui- 
ty € is approximately constant so 

COS>^;::;0,    sin/l;^l, 

COS P—sin 6,    sin p—cos £, 

and 

6^0. (49) 

Using approximations (49) in Eq. (48) the time derivative 
of the angular momentum vector becomes 

i—/3ft[ — A sin 6, — P(cos^ € + sin^ 6), 

p(sin 6 cos e — cos e sine) ] 

= I^il(-Asin€,-Pfi). (50) 

It is now possible to resolve H, Eq. (43), into its compo- 
nent parts and equate it with i. Since 1 = F = ^H 

( -Asine,-Pfi) 

2>G/?z J- 
-(sin 8 cos 8 sin a,sin 8 cos 8 cos a,0).    (51) 

The equatorial coordinates used for the position of the body 
supplying the torque needs to be transformed to the ecliptic 
coordinate system. The transformation between the two co- 
ordinate systems is given in The Explanatory Supplement to 
The American Ephemeris and Nautical Almanac (1974). 

APPENDIX B: EXPANSION OF THE EQUATION OF MOTION 
FOR AN ELLIPTICAL ORBIT 

The process of expansion for an elliptical orbit is begun by 
dropping the assumption of uniform motion and distance 
from the attracting body. Equations (6) and (7) are rewrit- 
ten 

A sin € ^ -Q sin € cos € sin^if— A), 

P- - sin € sin(f— A)cos(/— A), (52) 
r" 

where Q= 0^nGJ2)/{^q) and/is the true anomaly of 
Mars. Using standard trigonometric identities the sine and 
cosine functions in Eq. (52) are rewritten 

sin^if- A) = i - i cos 2/cos 2A -1 sin 2/sin 2A 

and (53) 

sin(/— A)cos(/— A) = ^ sin 2/cos 2A — ^ cos 2/sin 2A. 

Neither the true anomaly nor the distance from the Sun, r, 
are linear functions of time. However, both the true anomaly 
and the distance r can be represented by series expansions, 
Smart (1953) Chap. 3: 

^= 2^n cos(n^), 
r> 

^sin2/= ^^„sin(«^), 

^cos2/= yF„cos(«^), 

(54) 

f n = 0 

where a is the mean distance of the planet from the Sun. The 
coefficients for these series have been tabulated by Jarnagin 
(1965) and the series for Mars, truncated to six significant 
figures in the eccentricity e, are given in Table 4. The value 
used for the mean eccentricity e is 

e = 0.093 400 619 9474 (Bretagnon 1982). 

Substituting Eqs. (54) into Eqs. (53) and then substitut- 
ing that result into equations of motion (52) and simplifying 
gives the motion in longitude and latitude as 

[f^i,(f-f--) 
)■ 

^cos{n^) ^sin2Asin(«^) 
2 
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TABLE 4. Coefficient series in eccentricity, e, for polynomial expansions 
in the mean longitude, ^. 

Trig. Func. Coefficient Series 

(a/r)^       cos 2f cos \L -e + 3/48 e^-5/384 e^ 

l-5/2e^+l 

(a/r)^       sin 2f 

1 - 5/2 6^+13/166"^- 

35/288 e^ 

7/2 e-123/16 e^ + 

489/128 e^ 

17/2 6^-115/66"^ + 

601/48 e^ - 1423/360 e^ 

845/48 e^-32525/768 e^ 4 

1457575/43008 ^ 

533/16 6"^-13827/160 e^-f 

728889/8760 e^ 

cos IL       228347/3840 e^ - 

3071075/18432 e'' 

cos8£       73369/720 e^- 

775727/2520 e^ 

cos9i:        12144273/71680 e"^ 

cos \QL     634085 e^ 

1/48 e^ + 11/768 e^ 

2/48 6"* +42/1440 e^ 

81/1280 e^ 

64/720 6^ 

cos3£ 

cos4£ 

cos5iL 

cos6Z, 

cos7£ 

(a/r)-' 

sin \L 

sin2£ 

sin3y: 

sin4£ 

cos Ox 

cos \L 

cos2z, 

cos3i: 

cos4i: 

cos5i:, 

cos6£ 

COS7JC 

35/16 e" 

3 6 + 27/8 6^ + 261/646^ 

9/2 6^+ 7) 

141/32 e^ 

53/8 e^ +: 

24753/5120 e' 

77/8 6^* +129/801 

1773/128 6^ 

3167/1606^ 

432091/153606^ 

13 _Q cos2Asin(«.i^) 

 ^sin 2 A cos( n^)y 

Value 

-0.0466495 

0.9782526 

0.3206656 

0.0727009 

0.0140167 

0.0024783 

0.0004123 

0.0000659 

0.0000105 

0.0000016 

0.0000171 

0.0000032 

0.0000004 

0.0000001 

1.0132297 

0.2829808 

0.0395258 

0.0054202 

0.0007336 

0.0000985 

0.0000131 

0.0000017 

(55) 

The position of the periheUon with respect to the Martian 
vernal equinox is the difference between the advance of the 
perihehon and the precession of Mars. Using the Bretagnon 
(1982) meanorbitfor Mars and the circular orbit precession 
previously determined, the position of the perihelion is 

A = 94:'050 - ( - 7:'488) = 101:538 yr" ^ 

The motion of precession also folds in the effect of the mo- 
tion of Mars' perihelion with respect to its vernal equinox. 
However, the change in the precession rate from the circular 
orbit value is too small to affect the rate of precession from its 
inclusion in A or the amplitudes or periods of the nutation 
components. 

Collecting like terms together, constant Eqs. (55) inte- 
grate to give the nutation in longitude and latitude as 

/I = -Q ^"^(^^^^1^ [^„sin(«^)] 

-C„ cos(2A + «^) + A. sin(2A + n^)^ 

P -Q sin/y ^ COS (2A + «J^) 

+ -^sin(2A + «J^)). (56) 

The coefficients A^, A„,B„y and C„ are linear combinations 
ofthe coefficients in Eq. (54). 

APPENDIX C: PRECESSION AND NUTATION FROM CHANGES 
IN ECCENTRICITY 

The Bretagnon (1982) theory for Mars uses the canonical 
elements k = ecosU and h = esm 11, where e is the eccen- 
tricity and n is the longitude of perihelion. Both ofthe ele- 
ments k and h are given in the form 

k =-^T^B, sin r„+C^ cos rJ, 
n 

/z = 2^'^«(^„sinr„+F„cosrJ, (57) 

where T is the time in thousands of Julian years from 
J2000.0, A„ and Z>„ are the integer exponential coefficients 
ofthe time dependence, B„,C„,E„, and F„ are the amplitude 
coefficients for the sine and cosine functions, and 

rn=K„,Z-\-K„2V+K„,E + K„^M + K„,J 

-hK„,S + K„,U+K„,N, (58) 

where the variables Z, F, E, M, /, S, U, and iV are the mean 
ecUptic longitudes of Mercury, Venus, Earth, Mars, Jupiter, 
Saturn, Uranus, and Neptune, respectively, and the A'„^ are 
integer coefficients of the mean longitudes. Only the mean 
ecliptic longitudes of the Earth, Mars, and Jupiter are in- 
volved in those terms which may be large enough to signifi- 
cantly affect the amplitudes of Mars' nutation components. 

For a given term n in the series making up the periodic 
terms in eccentricity, the conversion from h„ and A:„ to el is 

el=hl+kl= G„ +H„ cos(2r„ ^Xn). (59) 
where 

G„=\{Bl+El-Cl-Fl), 

Hn=i{Cl +Fl -Bl -Elf+(B„C„ +E„F„)\ 

and 

Xn = arctan - 
2{B„C„-hE,FJ 

(60) 
Bl+El-d-Fl 

The conversion from h and k to e^ has a constant offset in 
eccentricity and a cosine function with an angular motion 
that is twice that ofthe original angular motion in h and k. 
The eccentricity is determined from e^ by applying a Taylor 
series expansion to Eq. (60). To first order the expansion is 

^=(G„+^„cos;^J^/^- ^n sin;t'« 

2(G„+^„cos;t'J^ 'Yn 
(61) 

In Bretagnon's theory for Mars there are seven terms in h 
and k with A„=D„=0 for which the zeroth-order Taylor 
series term for eccentricity is larger than 0.000 01 and there 
is one term, with A„=D„ = 1, for which the zeroth-order 
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term is larger than 0.000 00 L Inserting the values of these 
terms into Eq. (41) shows that the largest first-order term in 
Eq. (41) is a factor of 11,4 smaller than the smallest zeroth- 
order term. Hence only the zeroth-order terms are 
significant. 

APPENDIX D: PRECESSION AND NUTATION FROM CHANGES 
IN THE ORBITAL PLANE 

Because the change in obliquity is caused by changes in 
Mars' orbital plane, a constant plane needs to be chosen to 
describe its motion. The inertial reference plane chosen is the 
ecliptic plane of the Earth at J2000.0 and the variables deter- 
mining the orientation of Mars' orbital plane are the inclina- 
tion of the orbit to the echptic / and the position of the as- 
cending node of the orbit on the ecliptic fl. The general 
development of the long-period motion of the pole will fol- 
low that of Ward (1974) and Reasenberg & King (1979). 
The main results of this section are (1) a "linear" term add- 
ed to the precession as a result of the changes in the orbital 
plane and (2) a "linear" term for the change of the obliquity 
in time. Both of these terms are the first-order approxima- 
tions of sinusoidal motions which are approximately linear 
over periods on the order of 10 000 yr. 

The first-order equations of motion are 

= sin / cos iffola cos €Q -\ ^ ] + sin ipQ —, 
\ dt J dt 

de^ 

dt 

—^-^ = — at cos 6, 
dt 

dn 
dt 

sin / cot €Q 

X sin I/ZQI a cos EQ -\ ^) + cot €o cos tpQ —, 
\ dt / dt 

(62) 

where EQ and tpQ are the zeroth-order solutions for the motion 

and (63) 

ipo = ^ -at cos £o + ^0 - ^(0, 

where ^ and CIQ are the values of tff and H at some given 
initial time tQ and (1 (0 is the value of ft as a function of time. 

The motion in latitude is rewritten 

d€i 

dt 
= a cos €Q[P cos(at cos EQ — QQ — ^) 

— q sin(«/ cos £o — ^o — ^) ] H sin / sin ^o» 
dt 

The constants ^4^, Ofj, and Sj have been solved for the major 
solar system bodies, excluding Pluto, by Brouwer & van 
Woerkom (1950). These constants for Mars, brought for- 
ward from the ecliptic and equinox of B 1950.0 to the ecliptic 
and equinox of J2000.0 and modified for the lAU 1984 val- 
ues for the reciprocal masses of the planets (Kaplan 1981), 
are given in Table 5. 

Substituting Eqs. (65) for/? and q into Eqs. (64) gives 

—- = a cos eoy^4/ oosim.t -f at cos £o 
dt i 

+ 5y — flo — ^) H sin / sin ^o- 
dt 

(66) 

Equation (66) is integrated to obtain the first-order equa- 
tion for the nutation in latitude of Mars as a function of time 
resulting from the change in the orientation of Mars' orbit 
with time. 

6i - a cos 6o^ - ^4/ 

w-\- a cos 6o 

X ^m.{Wjt + at cos e^ + d^ — (IQ - 

+ sin / sin ipQ + C, 

^) 

(67) 

where Cis the constant of integration. Since the obliquity to 
the ecliptic at ? = 0 is €Q, the value of the constant of integra- 
tion is 

C=fo-I 
Wj^ a,j 

and 

j   Oij + a cos €Q 

^j^Aj 

sin (5^. - ^ - Ho) (68) 

j   Bj -\-a cos €Q 

X ['&m{a)jt + at cos €Q-\-8J — "^ — fto) 

+ sin(5^.-vi/-no)] . (69) 

(64) 

Plotting this equation for e^ in Fig. 5 shows a change in 
obliquity with time that appears to be a beat frequency of two 
sine waves with periods of 1.16X 10^ yr and 1.29 X 10^ yr. 
These are the frequencies of the perturbations of Jupiter and 
the Earth which supply 83.1% of the amplitude to the per- 
turbation in latitude. Over short periods of time near the 
present era, + 10 000 yr (Fig. 1), the motion in obHquity of 
the Martian pole as a result of the change in orientation of 
Mars' orbit can be represented by the linear function 

where/? = sin / cos n(r) and ^ = sin / sin n(r), the canoni- 
cal elements (Bretagnon 1982) for the orientation of the 
Mars' orbit. This allows the motion in latitude to be solved 
for as a function of the change in the orientation of Mars' 
orbit with time. 

The canonical elements q and/? are also functions of time. 
The first-order solutions for/? and q are represented by 

j 

Pf = Y.'^jf cos(mjt -\-Sj). (65) 

TABLE 5. Constants for the canonical elements for Mars. 

Planet GJj h ^41 A4i 
(i) r/yr.) 0 (rad.) (") 
1 -5.202 271.99 0.0017940 370.04 
2 -6.571 209.97 0.0017989 371.05 
3 -18.744 147.13 -0.0359444 -7414.06 
5 -17.633 188.68 0.0502514 10365.1 
6 -25.734 19.22 0.0096568 1991.86 
7 -2.903 207.44 -0.0012561 -259.09 
8 -0.678 95.00 -0.0012286 -253.42 

Planets are numbered by their increasing mean distance fiom the Sun 
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FIG. 5. Very long-period nutation in obliquity. The change in the incli- 
nation of Mars' pole with respect to its orbital plane resulting from the 
change in Mars' orbital plane with time. 

€= (25°2 + 0?01) +0:'4255r, (70) 

where t is the time, in years, from J2000.0. This Hnear equa- 
tion is obtained by doing a quadratic fit to function (69) for € 
over the period J2000.0 + 10 000 yr. The quadratic term of 

7"157X 10"^ yr~^ is insignificant. The uncertainty in the 
hnear term which appears as a "precession" in incHnation in 
the final solar nutation series is + 0''0012. The main source 
of uncertainty is the value of the inertia ratio. 

Substituting Eq. (69) for^i intoEqs. (62) the first-order 
equation of motion in longitude becomes 

—ri. = —acos ^0 — y —^  
at \ j   mj -\-a cos €Q 

X [sin(S7,.^ + at cos e^ + 5^. - ^ - n^) 

+ sin ((5,. - VIZ _ Ho) ]) - -^ - sin / cot £« 
/      at 

Xsin^o(«cos6 + -^) + cot£oCOS^o^. (71) 
V dt J dt 

Approximating cos Z;^ 1, putting all of the time derivatives 
on the left side of the equation, and substituting Eq. (63) for 
^ointoEq. (71) gives 

— (^1 H- ft — sin / cot €Q COS ^Q) 
dt 

= — a cos 1^0 - y ^"^ [sm(Gfjt -f at cos ^o + <5, - ^ - fto) + sin((5.. - ^ - HQ) 1 I 
V        j  caj-\-a cos €o V 

+ a sin / cot €o cos £o sin [n(r) + at cos €Q — ^ — HQ] . (72) 

The above equation, like Eq. (64) for e„ depends on (sin / sin H), so the same set of identities for/? and q, Eqs. (65), are 
substituted to give 

dt 
(^1 + H — sin/cot £( ^0 cos ^o) = - « cos 6? cos(^    ^  ^ sm(Kj +/LLj)\-a sin 6* sinf^    ^   ^ siniKj + jJ^j)) 

-h a sin / cot €Q COS e^ ^Nj sm{mjt + at cos €Q-\-8J — 'M — Ho) » (73) 

where 

Kj =afj -\-a cos fo* 

and 

The sine and cosine functions in Eq. (73) are approximat- 
ed in Ward (1974) by 

cos 

and 

sinj 

1 

\ j       Kj J j       Kj 

u mjNj 
: 0.015 958 143 

which when multiplied by a cos e* gives a total amplitude of 

0:2422 + 0"0007. 

Similarly, the total amphtude for the third-order term in the 
approximation for the sine function is 

i? 
mjNj 

= 0.000 950 3144. 

Multiplying this by a sin £*, the total amphtude of the third- 
(^^)       order term is 

Or003 393 + O'OOO 009. 

Thus, both the second- and third-order terms of the sine and 
cosine functions are potentially large enough to make a sig- 

(76) nificant contribution to the precession of Mars. Therefore, 
However, the total amplitude for the second-order terms for the equation of motion in longitude resulting from perturba- 
the cosine function approximation is tions in Mars' orbit will be approximated to third order by 
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— (^1 + ft — sin / cot €o cos ipo) = —a cos 6j 
dt 

asin6*2 -^-^sin(/c/ + //p+-lf-^^ 1 

+ a cos €Q cot €Q^NJ sin(Kjt -\- fij). 

1523 

(77) 

D. 1 Zeroth and First-Order Longitude Terms 

Equation (77) is the same as that derived by Ward (1974) 
with the addition of the second- and third-order terms in the 
approximation for the sine and cosine terms. The second- 
and third-order terms in Eq. (77) are related to the zeroth 
and first-order terms by addition, so they will be integrated 
separately and the results added to the first-order terms. 

Keeping the zeroth- and first-order terms only, Eq. (77) 
becomes 

— (^11 + n — sin / cot €Q cos ^o) 
dt 

= —acose^ — a sin ej^    ^  ^ siniKjt + jUj) 

(78) + a cos 6o cot OQ^NJ sin {Kjt-\- fij) . 
j 

Integrating Eq. (78) gives 

^11 + (!(/) — sin / cot €Q COS ^Q 

= —at cos 6j + a sin ejV    ^  ^ cosiKjt + /LLJ ) 
J     ^ 

N- 
— a cos £o cot 6o^ —— cos(Kjt + fij) + C. (79) 

Evaluating Eq. (64) for e* gives 

6* = 25!199±0'02. 

This value is indistinguishable from CQ. The values of the 
other angles at ^(0) are ft(0) = HQ and ^ii(O) = ^. Thus, 
the constant of integration is 

c^^N,. 
C = — y—^  ^    (a + mj cos €Q)cos jUj. 

j   sineoKJ 

The first-order approximation for tffi(t) is 

(80) 

^11 = ^ - «^ cos 6j + Ho - ^(0 

+ y   ,'  \ [ (a + cOj cos 6o) 
j   smeoKJ 

XCOS(Kjt -i- flj) + COS JLlj] . (81) 

The second term on the right-hand side of Eq. (81) is the 
already determined precession of Mars. The fourth term is 
the motion of the node of Mars' orbit along the ecliptic of 
J2(XX).0. The first and third terms in Eq. (81) are the posi- 
tions of the ascending node of Mars' orbit on its equator and 
the node of the orbit of Mars at J2000.0 with respect to the 
ecliptic and equinox of the Earth at J2000.0. 

The last term on the right side of the equation is the first- 
order motion of the longitude caused by the changes in the 
orientation of Mars' orbit with time. As with the motion in 
latitude, the motion in longitude is represented as a series of 
nutation components with periods varying from 71 421 yr to 
1270 0(X) yr (Fig. 6). The amplitudes of these changes in 
longitude are evaluated to range from 32 200" from the per- 
turbations by Jupiter to 65'7 from the perturbations by Nep- 
tune; however, 88.5% of the total amplitude of these pertur- 
bations are the result of the influences of Jupiter, the Earth, 
and Venus. Over short periods of time ( < 10 000 yr) the 
zeroth- and first-order parts of the first-order solution for 
precession and nutation in longitude appear as a contribu- 
tion to the precession of 

^11= 0^2127 ±0r0006 yr-' 

shown in Fig. 2. 

D.2 Second and Third-Order Longitude Terms 

Carrying out the squaring for the second-order cosine 
term in Eq. (77) and simplifying it gives 

a cos e* — I ^    ^  ^ sin{Kjt + ^ij)\ 

= a cos 6* i- k[i- (-^)'[ 1 - cos 2{Kjt + 2/.,) ] 

where k runs fromy + 1 to 8. This is then integrated to obtain 

-°-T[?|i[(T^>-^'""'-^''ll 

(82) 

(83) 
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The first term in Eq. (83) evaluates to be a secular precession of 

5^12 = Or0797 + 0r0002 yr - ^ 

The other three terms in Eq. (83) are 63 periodic components with ampHtudes as large as 0''0650 with periods ranging from 
44 229 to 946 700 yr. The evaluation of the periodic terms was carried out using MathCAD 2.0 on a Zenith 248PC. The 
motion over 5 X10^ yr shows that the main terms combine to form a quasiperiodic function with a period of about 1.17 X10^ 
yr and an ampHtude of 0" 15. However, over the short term the combined effect of these 63 terms is an additional "precession" 
of only 1 ?00 X10 " ^ yr ~ ^ which is far too small to be significant. 

Finally, cubing the third-order sine term in Eq. (77) and simplifying using //Math a simple algebraic manipulation 
program on a Zenith 248 PC gives 

-asin^*—(^-^^--^sin(/f/ + //p j = - a sin 6*—|^N-^--^ j [3 sin(/f/+//^.) - sin(3/c/+3//,)] 

+ sin[ (/f,. - lKj,)t + ^ij -Ifij,]-! sin(/r/ + //p)(l - Sj^) 

3 a)ja)ia}^NjNiN, + -   ■ (sin[(/c,- -^Ki+K^)t + fij -\-fii + fi^] 

+ sin[(yc,. -/C/ +/c^)r +//^. -^i +//^] +sin[(^^. + AT; -K^)t 

(84) 

where k is summed from 1 to 8, / is summed fromy + 1 to 8, w is summed from A: + 1 to 8, and Sj^ is the Kronecker delta. 
Equation (84) consists of 980 terms. Integrating this equation with respect to time gives 

°™''il?[i(^)'(t'""'''-'''''-i"'"'''■'"''•) 

[(Kj-2K^)t-\-fij-2iii^] -Acos(/c/ + //,.)Vl-^,J 

/         1 1 
 COS[{KJ + AT; + A:^)r + /X^. +//; + //^ ] + - 

\Kj -\-Ki-\-K^ 

Kj - IK I, 

^   3 yy mjWiW^NjNiN, 

2     im KiKjK, '^j'^l'^m 

XCOS[ (/C, -Ki+K^)t + flj -JUi+fl^] + 

1 

1 

+ 

Kj -\-Ki—K^ 
COS[ (/f, +Ki-K^ )t-\-iLtj +jUi-fl^] 

+ c. (85) 

-^       20.00 

.S 

-20.00 1 r 

-5000000.00 -2500000.00 

Years from present 

0.00 

FIG. 6. Very long-period nutation in longitude. The first-order change 
in the longitude of Mars' pole with respect to its orbital plane resulting 
from the change in Mars' orbital plane with time. 

Evaluating Eq. (85), also using MathCAD, shows that the 
amplitudes of the individual terms are as large as 
0"002 097 ± 0:'000 006 and periods ranging from 23 807 yr 
to 1.6x 10^ yr. Evaluation over 5000 yr shows a change in 
orientation of about 0''003 with no discernible period. There 
does, however, appear to be a "short-period** term with a 
period of about 130 000 yr and an amplitude of about 
0^0003. The short-period ( < 10 000 yr) change in orienta- 
tion with time is negligible. Therefore, the third-order ap- 
proximation of the sine function does not make a significant 
addition to the precession of Mars. 

APPENDIX E: PLANETARY TORQUES ON MARS 

In the zeroth-order estimate for the effect of the planets 
upon Mars it will be assumed that all the planets in the solar 
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TABLE 6. Coefficients for the Bl^^ term for 
the precession caused by the planets on 
Mars. 

Planet Coefficient 

Mercury 2.992 

Venus 8.411 

Earth 38.006 

Jupiter 3.418 

Saturn 2.344 

Uranus 2.080 

Neptune 2.032 

system travel in circular orbits in a common plane. These 
two assumptions reduce Eqs. (21) and (22) to 

-0=0 —Tsin 2/1 sin €, 

- A sin 6 = 2 -^ sin le cos^ k. (86) 

r sin /I = Tp sin L^ - 

r cos k = rp cos Lp 

Expressions for the "ecliptic" longitude and distance r as a 
function of time need to be derived before Eqs. (86) can be 
solved. Basic vector addition represents the position of a 
planet with respect to Mars by 

r^ sin ^, 

- VM COS ^, 
(87) 

where Vp is the distance of the planet from the Sun, r^ is the 
distance of Mars from the Sun, Lp is the heliocentric longi- 
tude of the planet, and ^ is the heliocentric longitude of 
Mars. Under the assumption of perturbation free, circular 
orbits, Vp and r^ are constants and 

Lp =npt-\-Lpo, 

^ = «^f+J^o, (88) 

where rip and rij^ are the mean motion of the planet and 
Mars, respectively, and L^ and ^Q are the heliocentric lon- 
gitudes of the planet and Mars at some epoch tg. For ease of 
notation, the heliocentric longitudes of epoch, L^ and J^Q, 

will be dropped until they are needed for evaluation of the 
precession and nutation. 

Using Eqs. (87) for sin A and cos A in Eqs. (86) gives 

-P =e —sm6—     '^ -' 
r r 

YpY^ sin( 

and 

-^ sin InJ-^-^ cos Irij, 
\1 ^        2 

(89) 

/Isine = e-^sin2e4  -^ +^^ +-^cos2«.f 
2/^ r^\2        2        2 

+ -^ cos lituft + r^r^ cos{«, + «M )f 

+ r^rMCOs(.np-n,^)tj. (90) 

TABLE 7. The B l''^ coefficients for the nutation 
caused by the Earth and Jupiter on Mars. 

n Earth Jupiter 

0 38.006 3.418 

1 36.203 2.163 

2 32.188 1.051 

3 27.254 0.449 

4 22.265 0.178 

5 17.701 0.067 

6 13.775 0.024 

7 10.538 0.009 

8 7.949 0.003 

The determination of the value of r as a function of time 
begins with the cosine law 

^ = fj>+fM- ^rpVj^ cosiUp -nj^)t. (91) 

In both (89) and (90) r appears as some power r   ^ where s 
is a positive integer. Using Eq. (91) /*"* is rewritten 

r-'=[fj>-\-fi,- IVpV^ cos(«^ -nM)t]~ ''^ 

1 + cosirip -nj^)t 

(92) 

or 

= rj. 1 + [^ - 2 -^ cos(«^ - n^)t 

(93) 

Both of Eqs. (92) and (93) have the general form 
(1 -\-x)~^^^, where x = b^ — 2bcosirip — nj^)t and b is 
either the ratio A-^/r^ or rj^/Vp. The solution to these equa- 
tions, provided the smaller of the ratios Vp/r^ or r^/Vp is 
always used, is 

..-sf  1 \^Bt^Y?'C^os\k{np-n^)t^, 

(94) 

where r^ is the smaller of Vp or r^ and B ^C' are the Laplace 
coefficients. The Laplace coefficients frequently arise in clas- 
sical celestial mechanics multibody problems such as the 
perturbation of the orbit of one planet by others. The method 
of solving for the value of any Laplace coefficients can be 
found in several places including Smart (1953). The values 
for B o'^^ for each of the planets torque on Mars are given in 
Table 6 and the values of ^^''^ through 5^''^ for the Earth 
and Jupiter with Mars are given in Table 7. 

Substituting Eq. (94) into the equation for the motion in 
longitude of the pole of Mars, Eq. (90), gives 
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- A sin 6 = -%^ sin lel^ B l^^{^{ 1 + a^) + — cos Irij^t + — a^ cos In A 
A^ 12 \4 4 4 

+ -^cos(«^ + nj^)t + -^cos {rip - «M)0 + J,^'H\^^ + ^^^^^^ ^("/' " '^A/)^ 
2 2 /       ^ \ 2 

1 1 A^ 
+ ---COS [knp-{k-l)nj^]t^-jCO^ [kn^ - {k-^l)nM]t-^^{co^[{k-2)np-knj^]t 

+ cos[ (/: H-2)«^ -/:/Z3^]r} + 1 a{cos[ (/: + 1)«^ - (/: - l)«^]r 

+ cos[(/:-l)«^-(/^+l)«^]r + cos[(/:+l)(«^-«3^)]r + cos[(/:+l)(«^-«3^)]?}jj.        (95) 

This equation is integrated to yield 

-0^ 
ri 

1 
-Asine = -^sin26—5^/2 —(l+a2)^ + _i_ sin 2«3^^ + -^^--sin 2«-/ 

8«. 8«„ 

+ "T"   sin(«   +nM)t-^ sin(«  - w^^)^ 
2   l«;,+«M «p-«M JJ 

+ Ei^ (!+«') 
2 [kinp-n^) 

1 

■sinA:(«_ -«^)r + 1 
l[knp-{k-l)nj^] 

mi[knp — ik — 2)nj^]t 

H ^ sm\kn^ - {k-\-2)nj^]t 
S[knp-(k + 2)n^]       ^    '     ' ^ ^J 

+ 
2  [[(k-2)np-kn^]       ^ ' ^^       [(k-^2) 

1-^ 

1 

+ 

+ 

[ik-\-\)np-(k-l)n^] 

1 

cos[ik-\-\)np-{k-\)nj^]t 

[(k-l)np-{k+\)n^] 

1 

sin[(A:-l)«^-(/:+l)/i3^]/ 

[(^+l)(«^-«^)] 

 1  

sin[(/:+l)(«^-«^)]r 

cos[ik-^l)(rip-nj^)]t (96) 

Like any equation involving numerous sine functions Eq. (96) looks daunting but it is actually quite simple. 
Similarly, substituting the equation for the expression r~'^^ into the equation for the motion in latitude gives 

.^=%sin6| 
2d 

\Bl''^[a^ sin In^t+ sm In^t-la sinirip - nj^)r ] 

+ '2^VH — {sm[(k + 2)«p - knM]t + sm[{k - 2)n^ - kn,^]t} 
k \ ^ 

+ i {sin[A:rt^ -{k- 2)/2^]/ + sin[/:«^ - (A: + 2)«^]r} 

-a{sin[(^+ l)/2^ - (/:- l)«^]r4-sin[(/:- 1)«^ - (A:+ 1)«M]^})] • 

The integral of Eq. (97) is 

2a 

(97) 

-P =-2fLsin6b^/Y-^cos2«^r + -l-cos2«^ 
^*p — '*M 

-cos(«^ -«M)M 

+ ?*'1f( 1 

(k + 2)n,-kn. 
-cos[(k-{-2)np-knj^]t + 1 

(/:-2)/2_ —/:«A 
■cos[(k-2)np -knj^f]t\ 
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1 i(- klip - {k-l)nj^ 
co^[knp - {k-2)nM]t^- — cos[/:«^ - (/:-f 2)«^]M 

kn   — {k-\-2)nj^ j 

+ 

a{ ?^ cosr(A:+ 1)«^ - {k- \)n^\t 

COS[(/:-1)«^-(/:+1)«M]^]]] 

1527 

{k-\)n^-{k^\)n 
(98) 
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